If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2-12v+2=0
a = 3; b = -12; c = +2;
Δ = b2-4ac
Δ = -122-4·3·2
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{30}}{2*3}=\frac{12-2\sqrt{30}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{30}}{2*3}=\frac{12+2\sqrt{30}}{6} $
| -3(x-2)=x+4+2x | | 3(2x+4)=5x+4x+6 | | 2(4x+5)=6(x+2) | | 3(x-3)+12=1/2(2x+8) | | 2(x+7)=4+3x+6 | | 2x+5x+7=6x-5 | | 12x-10x=44 | | 6-2d=11-7d | | 3(2x+4)=6x+2(x+3) | | 6(x-2)=2x+6+x | | 4(2x+5)=6(x-3) | | 3xx9=81 | | y2+12=7y;4,-3 | | 32+3w=7w | | 9/6=x-9/x | | 20x^2-65x+15=0 | | -(q+14)=2q=1 | | x^2+x-3.4=0 | | 9y+29-13+5=0 | | (s-2)(s+4)=0 | | 9(4x−8)=4(6x+9) | | 3w-1=144 | | 4×(5x-3)=78 | | -6x-(3)(3x+12)=39 | | 60+x=80+x | | 2x-7=4+x | | -6x-3(3x+12=39 | | 2t+5=15-t | | 4(p+6)=2p+16 | | -45x+15x^2-10x=0 | | 1.3+x=4.4 | | 28x^2-36x=0 |